A body of mass $m$ falls from a height $R$ above the surface of the earth, where $R$ is the radius of the earth. What is the velocity attained by the body on reaching the ground? (Acceleration due to gravity on the surface of the earth is $g$ )
$gR$
$\sqrt {gR}$
$\sqrt {g/R}$
$g/R$
If $v_e$ is escape velocity and $v_0$ is orbital velocity of satellite for orbit close to the earth's surface. Then these are related by
A satellite is launched into a circular orbit of radius $R$ around earth, while a second satellite is launched into a circular orbit of radius $1.02\, {R}$. The percentage difference in the time periods of the two satellites is -
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$ . the space around the masses is now filled with a liquid of specific gravity $3$ . The gravitational force between bodies will now be
When a body is taken from pole to the equator its weight
If the acceleration due to gravity at earth is $'g'$ and mass of earth is $80$ times that of moon and radius of earth is $4$ times that of moon, the value of acceleration due to gravity at the surface of moon will be